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I. abstract
A sum rate optimization for a wireless network has been considered in this problem. In this wireless

network, each link will receive not only its desired signal but also interference from other links. Since
the original optimization problem is not a convex optimization problem, we propose several methods
to transform the original objective function into a concave form. Then, dual-based sub-gradient
methods have been proposed to deal with each transformations. The simulation results show that
our proposed algorithm can converge in an acceptable number of iterations. Besides, the comparison
between each proposed methods is discussed via simulation.

II. Problem Introduction and Statement
In this problem, we consider a wireless network with n data links. Each link i transmits with

power Pi. Since the transmission antenna in each link is omnidirectional, its transmission signal will
not only transmit to its target receiver but also interfere to other links. Therefore, the influence of
interference can not be ignored in our considered model. Signal-to-interference-plus-noise ratio (SINR)
is a common metric in wireless communication to indicate the quality of wireless connections. SINR
is considered as the power of desired signal divide by the received interference and noise, which makes
us formulate the SINR of link i as

γi =
Gi,iPi

σ2
i +

∑
j ̸=i Gi,jPj

, (1)

in (1), Gi,i is the channel gain between the transmitter and receiver on link i and Gi,j is the channel
gain between the transmitter on link i and the receiver on link j. σ2

i is the thermal noise. Hence, the
received interference of the receiver on link i can be represented as

∑
j ̸=iGi,jPj.

According to the Shannon-Hartley theorem, the data rate of link i can be expressed as

Ri = W log2(1 + γi), (2)

where W is the bandwidth of each link. However, since the constant bandwidth W and changing log2
to log have no effect to the solution of the optimization problem, the data rate of this problem has
been modified into

Ri = log(1 + γi). (3)

This problem aims to find appropriate power allocation to maximize the total utility. However, for
maximizing the utility function, the adjusted power allocation is inside two log function, which makes
this problem hard to solve. Based on the professor’s suggestions, we change the original optimization
problem to total sum rate optimization problem. In addition, by comparing the original utility
optimization problem and total sum rate optimization problem, we propose an additional complicated
optimization problem which also considers minimum data rate requirement. On the other hand, the
objective function contains the interference part, which is a non-concave function. Inspired by [1] and
[2], we provide two ways to transform the original non-concave optimization problem into concave
problem. Furthermore, dual-based sub-gradient method has been proposed to solve the transformed
optimization problem. Difference from directly using gradient method that can only find local optimal
value due to the non-convex form, our transformation and proposed method can guarantee to find
optimal value in an acceptable iteration’s range. The detailed explanation will be introduced in the
following section.
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III. Problem Formulation and Solutions
Our goal is to adjust the transmission power to maximize the total sum rate of the considered

network, while ensuring the allocated transmission power will not exceed its maximal power supply.
The optimization problem can be presented as follow:

max
P

N∑
i=1

Ri (4a)

s.t. 0 ≤ Pi ≤ Pmax
i ,∀i, (4b)

where P = {Pi|∀i} and (4b) is the power allocation constraint. However, the objective function in
(4) has a difference of convex (d.c) structure, which is nonconcave.
Proof: we can rewrite the objective function in (4) as follow

N∑
i=1

Ri =
N∑
i=1

[ log(σ2
i +

∑
j ̸=i

Gi,jPj +Gi,iPi)− log(σ2
i +

∑
j ̸=i

Gi,jPj)], (5)

(5) is a d.c structure. According to [3], a function that is a d.c structure is not a concave function.
Thus, further transformation is needed to get the optimal solution.

A. High SINR approximation
Firstly, we assume high SINR case, i.e., γi ≫ 1. In this case, the data rate of link i can be

approximated to R̂i = log(γi). Then, using the technique of geometric programming, we define P̂i =
logPi. As such, the original objective function can be transformed into

N∑
i=1

R̂i =
N∑
i=1

[P̂i + log(Gi,i)− log (σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))], (6)

since (6) is a log-sum-exp function, which is a concave function [2], the original optimization problem
can be reformulated as

max
P̂

N∑
i=1

[P̂i + log(Gi,i)− log (σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))] (7a)

s.t. exp (P̂i) ≤ Pmax
i ,∀i, (7b)

By such transformation, the optimization problem has been transformed into concave maximization
problem. Therefore, Lagrange dual technique [4] can be used to deal with this problem.

Lagrange function can be formulated as

L(P̂,λ) =
N∑
i=1

[P̂i + log(Gi,i)− log(σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))]−
N∑
i=1

λi[ exp(P̂i − Pmax
i )], (8)

where λ is the Lagrange multiplier vector corresponding to power allocation constraint. The dual
problem then can be written as

min
λ

max
P̂

L(P̂,λ). (9)

The dual problem can be solved by decomposing it into two nested loops: to maximize P̂ for given
λ in the outer loop and to minimize the dual problem through λ in the outer loop. Therefore,
by differentiating L(P̂,λ) with respect to P̂i and replacing P̂i = log(Pi), the corresponding KKT
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condition can be written as

1− λiPi − Pi

∑
j ̸=i

Gj,i∑
k ̸=j Gk,jPk + σ2

j

= 0, (10)

by arranging (10) in terms of Pi, the optimal power allocation in each iteration can be obtained

Pi =
1

λi +
∑

j ̸=i
Gj,i∑

k ̸=j Gk,jPk+σ2
j

. (11)

Besides, we use subgradient method to solve the dual problem, i.e. minλ>0 L(P̂,λ), in the outer loop.
The Lagrange multiplier update function can be written as

λi(k + 1) = [λi(k)− ζ(k)(Pmax
i − Pi)]

+, (12)

where [x]+ = max{0, x}, k is the iteration index, ζ(k) is the step size, which we set as 1 in the
simulation in order to get the optimal result.

B. High SINR approximation with minimum data rate constraint
Compare the difference between log utility objective function and sum rate objective function, due

to the property of log function, log utility objective function will guarantee minimum data rate of
each link by avoid allocating power unduly toward certain link. However, to maximize the sum rate
objective function, power might only allocate to certain link to mitigate the influence of interference,
which cause other links lost the ability of data transmission.

For the reason mentioned above, we reformulate the optimization problem in III-A with additional
minimum data rate requirement.

max
P

N∑
i=1

Ri (13a)

s.t. 0 ≤ Pi ≤ Pmax
i , ∀i (13b)

Ri ≥ Rmin,∀i, (13c)

where Rmin is the minimum data requirement. By adopting same manner of geometric programming,
the transformed optimization problem can be rewritten as

max
P̂

N∑
i=1

[P̂i + log(Gi,i)− log (σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))] (14a)

s.t. exp (P̂i) ≤ Pmax
i ,∀i (14b)

Ri ≥ Rmin, ∀i. (14c)

Then, the corresponding Lagrange function is formulated as

L(P̂,λ,µ) =
N∑
i=1

[P̂i + log(Gi,i)− log(σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))]

−
N∑
i=1

λi[ exp(P̂i)− Pmax
i ] +

N∑
i=1

µi[R̂i −Rmin], (15)

where µ is the Lagrange multiplier vector corresponding to minimum data rate requirement. The



3

optimal power allocation in inner loop is calculated as

Pi =
1 + µi

λi +
∑

j ̸=i(1 + µj)
Gj,i∑

k ̸=j Gk,jPk+σ2
j

, (16)

the Lagrange multiplier update functions are written as

λi(k + 1) =[λi(k)− ζ1(k)(P
max
i − Pi)]

+, (17)
µi(k + 1) =[µi(k)− ζ2(k)(R̂i −Rmin)]

+. (18)

C. Lower bound approximation with minimum data rate constraint
The above subsections consider the case of high SINR, however, this case is not necessarily held

in general. Thus, a lower bound approximation is provided to solve the problem.
The lower bound of data rate can be expressed as [2]

Ri = log(1 + γi) ≥ αi log(γi) + βi, (19)

where αi and βi can be updated as

αi =
γi

1 + γi
, (20)

βi = log(1 + γi)−
γi

1 + γi
log(γi). (21)

We then reformulate the transformed optimization problem as

max
P̂

N∑
i=1

αi[P̂i + log(Gi,i)− log (σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))] +
N∑
i=1

βi (22a)

s.t. C1: exp (P̂i) ≤ Pmax
i ,∀i, (22b)

C2: Ri ≥ Rmin, ∀i, (22c)
(22d)

the corresponding Lagrange function is written as

L(P̂,λ,µ) =
N∑
i=1

αi[P̂i + log(Gi,i)− log(σ2
i +

∑
j ̸=i

Gi,j exp(P̂j))] +
N∑
i=1

βi (23)

−
N∑
i=1

λi[ exp(P̂i − Pmax
i )] +

N∑
i=1

µi[R̂i −Rmin]. (24)

Furthermore, the optimal power allocation in each iteration is calculated as

Pi =
αi + µi

λi +
∑

j ̸=i(αj + µj)
Gj,i∑

k ̸=j Gk,jPk+σ2
k

. (25)

Using subgradient method to update the Lagrange multiplier, the update functions are written as

γi(k + 1) =[γi(k)− ζ1(k)(P
max
i − Pi)]

+, (26)
µi(k + 1) =[µi(k)− ζ2(k)(R̂i −Rmin)]

+. (27)

Note that we use lower bound to approximate the data rate, thus, we use (20) (21) to update the lower
bound until the lower bound converges to the original data rate. The pseudo code of the proposed
method is shown in Algorithm 1.
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Algorithm 1: Proposed Algorithm
1: Initialize the maximum number of iterations in Cmax

o

2: Set the iteration index of lower bound update loop co = 0
3: repeat {Lower bound update Loop}
4: Initialize the coefficients αi and βi in (19)
5: Initialize the maximum number of iterations in dual problem loop Cmax

i

6: Set the iteration index of dual problem loop k = 0
7: repeat {Dual Problem Loop}
8: Solve the problem in (22)and obtain the decision policy P by (25)
9: Update Lagrange multipliers by (26) (27)

10: k = k + 1
11: until Convergence of decision policy P or k = Cmax

i

12: Update αi and βi using equation (20) (21)
13: until Convergence of αi and βi or co = Cmax

o

0 2 4 6 8 10 12 14 16
Number of iterations

16

18

20

22

24

26

28

30

T
ot

al
 d

at
a 

ra
te

Lower bound with R
min

High SINR
High SINR with R

min

Fig. 1. Total data rate versus number of iterations in good channel condition.

IV. Simulation results
In this section, the performance of proposed algorithms are evaluated via simulations. Consider

a wireless network consisting of 20 data links. The maximum transmission power of each link Pmax
i

is 0.2 Watt. The thermal noise σ2
i is -120 dBm. In order to guarantee non-negative data rate, the

minimum data requirement Rmin is 0. Convergence stopping criterion is set as 10−5.
In Fig. 1, total data rate comparison between three different methods are provided over the number

of iterations in good channel condition. In this case, good channel condition means Gi,i ≫ Gi,j, i.e.
interference has less influence on SINR. The results of ”High SINR”, ”High SINR with Rmin”, and
”Lower bound with Rmin” are the proposed methods mentioned in section III-A, III-B, and III-C
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Fig. 2. Total data rate versus number of iterations in bad channel condition.

individually. It can be observed, firstly, that the proposed methods can converge in at most 16 times
iterations. Additionally, the total data rate of ”High SINR” case and ”High SINR with minimum data
rate constraint” case converge to same value since every links can satisfy minimum data requirement
without specific constraint in good channel condition. Furthermore, since we update the lower bound
until it converges to the original data rate, the lower bound approximation can get more accurate
value of data rate than High SINR assumption. Therefore, ”Lower bound with Rmin” can get higher
total data rate compared to other two High SINR cases.

In Fig. 2, we compare total data rate of proposed methods in bad channel condition, in which
interference will have severe impact on SINR. In this case, power will allocate exceedingly toward
certain link to enhance its data rate while sacrificing other links capability to reduce the influence of
interference. Therefore, ”Higher SINR” can get higher total data rate than ”High SINR with Rmin”
since the latter one will guarantee minimum data rate of each link while sacrificing total throughput.
Further SINR analyses will be introduced in Fig.3. On the other hand, ”Lower bound with Rmin” still
get the highest value. It is because the assumption of γi ≫ 1 is not held in bad channel condition.

The results of SINR in each link using high SINR assumption method are illustrated in Fig.3.
Fig.3(a) is the SINR without minimum data rate constraint whereas SINR with minimum data rate
requirement is depicted in Fig.3(b). Since we restrict the minimum data rate Rmin to 0, i.e, the
minimum SINR is 1, it can be observed that some of links have been sacrificed in order to maximize
the total data rate if minimum data rate constraint is not considered. However, if minimum data
rate requirement is guaranteed, each link can fulfill its minimum SINR and yet its total data rate is
lower than the case without minimum data rate constraint.

V. Conclusion and future work
In this problem, a sum rate optimization problem has been considered. Since the original opti-

mization problem has a difference of convex structure, which is not a concave function, we consider
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Fig. 3. SINR of each data link
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both high SINR approximation and lower bound approximation to transform the original problem
into a concave form. In addition, by comparing the difference between utility function and total sum
rate function, we consider the optimization problem with additional minimum data rate constraint.
Furthermore, dual-based sub-gradient method has been proposed to deal with these three different
optimization problems. Simulation results then compare the results of these three different cases in
different channel condition. The simulation results show that lower bound approximation can get the
highest value compare to others. The case with considering minimum data rate constraint will get
the same value as the case without considering the additional constraint in good channel condition.
However, in bad channel condition, the case without considering the additional constraint will get
higher value than the case with considering minimum data rate constraint since the former case
guarantees the minimum data rate. A distributed system network can be considered in the future
work. Each link will not get the information of other links in the distributed network. Game theory
optimization technique can be utilized to deal with the problem of distributed network.
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